SC2EGSet: StarCraft II Esport Replay and Game-state Dataset

  • Reitman, J. G., Anderson-Coto, M. J., Wu, M., Lee, J. S. & Steinkuehler, C. Esports Research: A Literature Review. Games and Culture 15, 32–50, https://doi.org/10.1177/1555412019840892 (2020).

    Article 

    Google Scholar
     

  • Chiu, W., Fan, T. C. M., Nam, S.-B. & Sun, P.-H. Knowledge Mapping and Sustainable Development of eSports Research: A Bibliometric and Visualized Analysis. Sustainability 13, https://doi.org/10.3390/su131810354 (2021).

  • Scholz, T. M. A Short History of eSports and Management, 17–41 (Springer International Publishing, Cham, 2019).

  • Pustišek, M., Wei, Y., Sun, Y., Umek, A. & Kos, A. The role of technology for accelerated motor learning in sport. Personal and Ubiquitous Computing https://doi.org/10.1007/s00779-019-01274-5 (2019).

  • Giblin, G., Tor, E. & Parrington, L. The impact of technology on elite sports performance. Sensoria: A Journal of Mind, Brain & Culture 12, https://doi.org/10.7790/sa.v12i2.436 (2016).

  • Baerg, A. Big Data, Sport, and the Digital Divide: Theorizing How Athletes Might Respond to Big Data Monitoring. Journal of Sport and Social Issues 41, 3–20, https://doi.org/10.1177/0193723516673409 (2017).

    Article 

    Google Scholar
     

  • Chen, M. A., Spanton, K., van Schaik, P., Spears, I. & Eaves, D. The Effects of Biofeedback on Performance and Technique of the Boxing Jab. Perceptual and Motor Skills 128, 1607–1622, https://doi.org/10.1177/00315125211013251. PMID: 33940988 (2021).

  • Rajšp, A. & Fister, I. jr A Systematic Literature Review of Intelligent Data Analysis Methods for Smart Sport Training. Applied Sciences 10, https://doi.org/10.3390/app10093013 (2020).

  • Kos, A. & Umek, A. Smart sport equipment: SmartSki prototype for biofeedback applications in skiing. Personal and Ubiquitous Computing 22, https://doi.org/10.1007/s00779-018-1146-1 (2018).

  • Seif El-Nasr, M., Drachen, A. & Canossa, A. (eds.) Game Analytics: Maximizing the Value of Player Data (Springer London, London, 2013).

  • Su, Y., Backlund, P. & Engström, H. Comprehensive review and classification of game analytics. Service Oriented Computing and Applications 15, 141–156, https://doi.org/10.1007/s11761-020-00303-z (2021).

    Article 

    Google Scholar
     

  • Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575, 350–354, https://doi.org/10.1038/s41586-019-1724-z (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaderberg, M. et al. Human-level performance in 3D multiplayer games with population-based reinforcement learning. Science 364, 859–865, https://doi.org/10.1126/science.aau6249 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 1140–1144, https://doi.org/10.1126/science.aar6404 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Berner, C. et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680 (2019).

  • Kowalczyk-Grębska, N. et al. Real-time strategy video game experience and structural connectivity – A diffusion tensor imaging study. Human Brain Mapping 39, https://doi.org/10.1002/hbm.24208 (2018).

  • Green, C. S. & Bavelier, D. Action video game modifies visual selective attention. Nature 423, 534–537, https://doi.org/10.1038/nature01647 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Green, C. S. & Bavelier, D. Learning, attentional control, and action video games. Current biology: CB 22, R197–R206, https://doi.org/10.1016/j.cub.2012.02.012 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alfonso, F. et al. Data Sharing: A New Editorial Initiative of the International Committee of Medical Journal Editors. Implications for the Editors’ Network. Revista Portuguesa de Cardiologia 36, 397–403, https://doi.org/10.1016/j.repc.2017.02.001 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ghasemaghaei, M. Does data analytics use improve firm decision making quality? The role of knowledge sharing and data analytics competency. Decision Support Systems 120, 14–24, https://doi.org/10.1016/j.dss.2019.03.004 (2019).

    Article 

    Google Scholar
     

  • Zuiderwijk, A. & Spiers, H. Sharing and re-using open data: A case study of motivations in astrophysics. International Journal of Information Management 49, 228–241, https://doi.org/10.1016/j.ijinfomgt.2019.05.024 (2019).

    Article 

    Google Scholar
     

  • Białecki, A., Gajewski, J., Białecki, P., Phatak, A. & Memmert, D. Determinants of victory in Esports – StarCraft II https://doi.org/10.1007/s11042-022-13373-2 (2022).

  • Blair, M., Thompson, J., Henrey, A. & Chen, B. SkillCraft1 Master Table Dataset. UCI Machine Learning Repository. Acessed: 2022-06-03 (2013).

  • Wu, H., Zhang, J. & Huang, K. MSC: A Dataset for Macro-Management in StarCraft II https://doi.org/10.48550/ARXIV.1710.03131 (2017).

  • Białecki, A., Krupiński, L. & Białecki, P. Kaszanas/SC2InfoExtractorGo: 1.2.1 SC2InfoExtractorGo Release. Zenodo https://doi.org/10.5281/zenodo.5296788 (2022).

  • Białecki, A., Białecki, P. & Krupiński, L. Kaszanas/SC2DatasetPreparator: 1.2.0 SC2DatasetPreparator Release. Zenodo https://doi.org/10.5281/zenodo.5296664 (2022).

  • Białecki, A. & Białecki, P. Kaszanas/SC2MapLocaleExtractor: 1.1.1 SC2MapLocaleExtractor Release. Zenodo https://doi.org/10.5281/zenodo.zenodo.4733264 (2021).

  • Białecki, A. & Białecki, P. Kaszanas/SC2AnonServerPy: 1.0.1 SC2AnonyServerPy Release. Zenodo https://doi.org/10.5281/zenodo.5138313 (2021).

  • Białecki, A. SC2ReSet: StarCraft II Esport Replaypack Set. Zenodo https://doi.org/10.5281/zenodo.5575796 (2022).

  • Białecki, A. et al. SC2EGSet: StarCraft II Esport Game State Dataset. Zenodo https://doi.org/10.5281/zenodo.5503997 (2023).

  • Białecki, A., Białecki, P., Szczap, A. & Krupiński, L. Kaszanas/SC2_Datasets: 1.0.0 SC2_Datasets Release. Zenodo https://doi.org/10.5281/zenodo.6629005 (2022).

  • Thompson, J. J., Blair, M., Chen, L. & Henrey, A. J. Video Game Telemetry as a Critical Tool in the Study of Complex Skill Learning. PLoS ONE 8, https://doi.org/10.1371/journal.pone.0075129 (2013).

  • Lin, Z., Gehring, J., Khalidov, V. & Synnaeve, G. STARDATA: A StarCraft AI Research Dataset. Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 13, 50–56 (2021).

    Article 

    Google Scholar
     

  • Smerdov, A., Zhou, B., Lukowicz, P. & Somov, A. Collection and Validation of Psychophysiological Data from Professional and Amateur Players: a Multimodal eSports Dataset https://doi.org/10.48550/ARXIV.2011.00958 (2020).

  • Braun, P. et al. Game Data Mining: Clustering and Visualization of Online Game Data in Cyber-Physical Worlds. Procedia Computer Science 112, 2259–2268, https://doi.org/10.1016/j.procs.2017.08.141 (2017).

    Article 

    Google Scholar
     

  • Glass, J. & McGregor, C. Towards Player Health Analytics in Overwatch. In 2020 IEEE 8th International Conference on Serious Games and Applications for Health (SeGAH), 1–5, https://doi.org/10.1109/SeGAH49190.2020.9201733 (2020).

  • Blom, P. M., Bakkes, S. & Spronck, P. Towards Multi-modal Stress Response Modelling in Competitive League of Legends. In 2019 IEEE Conference on Games (CoG), 1–4, https://doi.org/10.1109/CIG.2019.8848004 (2019).

  • Ani, R., Harikumar, V., Devan, A. K. & Deepa, O. Victory prediction in League of Legends using Feature Selection and Ensemble methods. In 2019 International Conference on Intelligent Computing and Control Systems (ICCS), 74–77, https://doi.org/10.1109/ICCS45141.2019.9065758 (2019).

  • Aung, M. et al. Predicting skill learning outcomes in a large, longitudinal MOBA dataset. In Proceedings of the IEEE Computational Intelligence in Games, https://doi.org/10.1109/CIG.2018.8490431 (IEEE, 2018).

  • Maymin, P. Z. Smart kills and worthless deaths: eSports analytics for League of Legends. Journal of Quantitative Analysis in Sports 17, 11–27, https://doi.org/10.1515/jqas-2019-0096 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lee, H., Hwang, D., Kim, H., Lee, B. & Choo, J. DraftRec: Personalized Draft Recommendation for Winning in Multi-Player Online Battle Arena Games. In Proceedings of the ACM Web Conference 2022, WWW ‘22, 3428–3439, https://doi.org/10.1145/3485447.3512278 (Association for Computing Machinery, New York, NY, USA, 2022).

  • Gourdeau, D. & Archambault, L. Discriminative neural network for hero selection in professional Heroes of the Storm and DOTA 2. IEEE Transactions on Games 1–1, https://doi.org/10.1109/TG.2020.2972463 (2020).

  • Hodge, V. et al. Win Prediction in Esports: Mixed-Rank Match Prediction in Multi-player Online Battle Arena Games https://doi.org/10.48550/ARXIV.1711.06498 (2017).

  • Hodge, V. et al. Win Prediction in Multi-Player Esports: Live Professional Match Prediction. IEEE Transactions on Games 1–1, https://doi.org/10.1109/TG.2019.2948469 (2019).

  • Cavadenti, O., Codocedo, V., Boulicaut, J.-F. & Kaytoue, M. What Did I Do Wrong in My MOBA Game? Mining Patterns Discriminating Deviant Behaviours. In 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), 662–671, https://doi.org/10.1109/DSAA.2016.75 (2016).

  • Pedrassoli Chitayat, A. et al. WARDS: Modelling the Worth of Vision in MOBA’s. In Arai, K., Kapoor, S. & Bhatia, R. (eds.) Intelligent Computing, 63–81, https://doi.org/10.1007/978-3-030-52246-9_5 (Springer International Publishing, Cham, 2020).

  • Sánchez-Ruiz, A. A. & Miranda, M. A machine learning approach to predict the winner in StarCraft based on influence maps. Entertainment Computing 19, 29–41, https://doi.org/10.1016/j.entcom.2016.11.005 (2017).

    Article 

    Google Scholar
     

  • Stanescu, M., Barriga, N. & Buro, M. Using Lanchester Attrition Laws for Combat Prediction in StarCraft. Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 11, 86–92, https://doi.org/10.1609/aiide.v11i1.12780 (2021).

    Article 

    Google Scholar
     

  • Norouzzadeh Ravari, Y., Bakkes, S. & Spronck, P. StarCraft Winner Prediction. Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 12, 2–8, https://doi.org/10.1609/aiide.v12i2.12887 (2021).

    Article 

    Google Scholar
     

  • Helmke, I., Kreymer, D. & Wiegand, K. Approximation Models of Combat in StarCraft 2 https://doi.org/10.48550/ARXIV.1403.1521 (2014).

  • Lee, D., Kim, M.-J. & Ahn, C. W. Predicting combat outcomes and optimizing armies in StarCraft II by deep learning. Expert Systems with Applications 185, 115592, https://doi.org/10.1016/j.eswa.2021.115592 (2021).

    Article 

    Google Scholar
     

  • Lee, C. M. & Ahn, C. W. Feature Extraction for StarCraft II League Prediction. Electronics 10, https://doi.org/10.3390/electronics10080909 (2021).

  • Cavadenti, O., Codocedo, V., Boulicaut, J.-F. & Kaytoue, M. When cyberathletes conceal their game: Clustering confusion matrices to identify avatar aliases. In 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), 1–10, https://doi.org/10.1109/DSAA.2015.7344824 (2015).

  • Volz, V., Preuss, M. & Bonde, M. K. Towards Embodied StarCraft II Winner Prediction. In Cazenave, T., Saffidine, A. & Sturtevant, N. (eds.) Computer Games, 3–22, https://doi.org/10.1007/978-3-030-24337-1_1 (Springer International Publishing, Cham, 2019).

  • Mathonat, R., Boulicaut, J.-F. & Kaytoue, M. A Behavioral Pattern Mining Approach to Model Player Skills in Rocket League. In 2020 IEEE Conference on Games (CoG), 267–274, https://doi.org/10.1109/CoG47356.2020.9231739 (2020).

  • Khromov, N. et al. Esports Athletes and Players: A Comparative Study. IEEE Pervasive Computing 18, 31–39, https://doi.org/10.1109/MPRV.2019.2926247 (2019).

    Article 

    Google Scholar
     

  • Koposov, D. et al. Analysis of the Reaction Time of eSports Players through the Gaze Tracking and Personality Trait. In 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), 1560–1565, https://doi.org/10.1109/ISIE45063.2020.9152422 (2020).

  • Smerdov, A., Burnaev, E. & Somov, A. eSports Pro-Players Behavior During the Game Events: Statistical Analysis of Data Obtained Using the Smart Chair. In 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 1768–1775, https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00314 (2019).

  • Xenopoulos, P., Freeman, W. R. & Silva, C. Analyzing the Differences between Professional and Amateur Esports through Win Probability. In Proceedings of the ACM Web Conference 2022, WWW ‘22, 3418–3427, https://doi.org/10.1145/3485447.3512277 (Association for Computing Machinery, New York, NY, USA, 2022).

  • Jonnalagadda, A., Frosio, I., Schneider, S., McGuire, M. & Kim, J. Robust Vision-Based Cheat Detection in Competitive Gaming. The Proceedings of the ACM in Computer Graphics and Interactive Techniques 4, https://doi.org/10.1145/3451259 (2021).

  • Galli, L., Loiacono, D., Cardamone, L. & Lanzi, P. L. A cheating detection framework for Unreal Tournament III: A machine learning approach. In 2011 IEEE Conference on Computational Intelligence and Games (CIG’11), 266–272, https://doi.org/10.1109/CIG.2011.6032016 (2011).

  • Wang, X. et al. SCC: an efficient deep reinforcement learning agent mastering the game of StarCraft II. CoRR abs/2012.13169 https://arxiv.org/abs/2012.13169. 2012.13169 (2020).

  • Bednárek, D., Krulis, M., Yaghob, J. & Zavoral, F. Data Preprocessing of eSport Game Records – Counter-Strike: Global Offensive. 269–276, https://doi.org/10.5220/0006475002690276 (2017).

  • Feitosa, V. R. M., Maia, J. G. R., Moreira, L. O. & Gomes, G. A. M. GameVis: Game Data Visualization for the Web. In 2015 14th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), 70–79, https://doi.org/10.1109/SBGames.2015.21 (2015).

  • Afonso, A. P., Carmo, M. B. & Moucho, T. Comparison of Visualization Tools for Matches Analysis of a MOBA Game. In 2019 23rd International Conference Information Visualisation (IV), 118–126, https://doi.org/10.1109/IV.2019.00029 (2019).

  • Stepanov, A. et al. Sensors and Game Synchronization for Data Analysis in eSports. 2019 IEEE 17th International Conference on Industrial Informatics (INDIN) 1, 933–938, https://doi.org/10.1109/INDIN41052.2019.8972249 (2019).

    Article 

    Google Scholar
     

  • Korotin, A. et al. Towards Understanding of eSports Athletes’ Potentialities: The Sensing System for Data Collection and Analysis. In 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 1804–1810, https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00319 (2019).

  • Melentev, N. et al. eSports Players Professional Level and Tiredness Prediction using EEG and Machine Learning. In 2020 IEEE SENSORS, 1–4, https://doi.org/10.1109/SENSORS47125.2020.9278704 (2020).

  • Smerdov, A., Somov, A., Burnaev, E., Zhou, B. & Lukowicz, P. Detecting Video Game Player Burnout With the Use of Sensor Data and Machine Learning. IEEE Internet of Things Journal 8, 16680–16691, https://doi.org/10.1109/JIOT.2021.3074740 (2021).

    Article 

    Google Scholar
     

  • Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Buitinck, L. et al. API design for machine learning software: experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and Machine Learning, 108–122 (2013).

  • Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ‘16, 785–794, https://doi.org/10.1145/2939672.2939785 (Association for Computing Machinery, New York, NY, USA, 2016).

  • Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. In Wallach, H. et al. (eds.) Advances in Neural Information Processing Systems, vol. 32 (Curran Associates, Inc., 2019).

  • Falcon, W. The PyTorch Lightning team. PyTorch Lightning. Zenodo https://doi.org/10.5281/zenodo.3828935 (2019).